Journal of Organometallic Chemistry, 132 (1977) 367-375
© Elsevier Sequoia S A, Lausanne - Printed in The Netherlands

THE CRYSTAL STRUCTURE OF DICARBONYLDICYCLOPENTADIENYLTITANIUM(ĪI), $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}(\mathrm{CO})_{2}$

JERRYL ATWOOD * and KAREN E STONE
Department of Chemistry, University of Alabama, Unwerstty, Alabama 35486 (USA)
HELMUT G ALT, DUANE C HRNCIR and MARVIN D RAUSCH *
Depariment of Chemistry, Unwersıty of Massachusetts, Amherst, Massachusetts 01002 (U S A)
(Received November 15th, 1976)

Summary

The crystal structure of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}_{1}(\mathrm{CO})_{2}$ has been determined from singlecrystal X-ray diffraction data collected by counter methods Dicarbonyldicyclopentadienyltitanium(II) crystalizes in the orthorhombic space group Pnma with lattice constants $a=7837(9), b=11475(8), c=12232(8) \AA$, and $\rho_{c}=$ $1.41 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=4$ Least-squares refinement gave a final conventional R value of 0.086 for 648 independent observed reflections The molecule, which resides on a crystallographic murror plane that passes through the cyclopentadienyl groups, possesses almost exact $C_{2 v}$ point symmetry The $T i-C$ (carbonyl) bond length is $2030(11) \AA$, while the average $\mathrm{T}-\mathrm{C}\left(\eta^{5}\right)$ distance is 2.347(13) \AA The $\mathrm{C}-\mathrm{Tr}-\mathrm{C}$ bond angle is $876(6)^{\circ}$, and the ring center-Ti-ring center angle is 138.6°.

Introduction

The determination of the structure of carbonyl compounds of the transition metals has been an enduring problem Numerous investigations by both electron and X-ray diffraction techniques have followed the initial study [1] of $\mathrm{N}_{1}(\mathrm{CO})_{4}$ in 1935 The necessity of producing accurate bond lengths and angles has often required even more effort than the original determination Thus, although the structure of $\mathrm{Fe}(\mathrm{CO})_{5}$ was first obtanned [2] in 1939, at least seven papers on the subject were reported [3-9] in the 1960's

Because of the high current interest in metal carbonyls from the standpoint of catalysis, synthesis and unique bonding features, a wealth of well-determined structural parameters are now avalable for most transition metal carbonyls In marked contrast, however, no such structural information has ever been obtaned for carbonyl derivatives of the group IVB metals, even though synthetic break-
throughs and chemical studies on this unique class of organometallic compounds are expanding rapidly at the present time [10-17]. We have previously communicated the preliminary results [18] of the X-ray crystallographic study of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}(\mathrm{CO})_{2}$, we now present a full discussion of the structure together with a comparison of the metal-carbon bond lengths in first-row transition metal-carbonyl complexes.

Expermmental

Dicarbonyldicyclopentadienyltitanıum(II) was prepared by the hiterature method [12] and recrystallized from toluene Single crystals of the compound were sealed in thin-walled glass capillanies. Final lattice parameters as determined from a least-squares refinemenc of the angular settings of 12 reflections ($2 \theta>$ 20°) accurately centered on an Enraf-Nonius CAD-4 diffractometer are given in Table 1. Because of problems with crystal decomposition it was not possible to obtain an accurate expermmental density The space group was determined as Prma or $\operatorname{Pn} 2_{1} a$ from systematic absences $0 k l, k+l=2 n+1$ and $h k 0, h=$ $2 n-1$ Solution and refinement of the structure showed the correct choice to be the centric Pnma

Data were collected on the diffractometer with graphite crystal monochromated Mo- K_{c} radiation The diffracted intensities were collected by the $\omega-2 \theta$ scan technique with a take-off angle of 35° The scan rate was variable and was determined by a fast $20^{\circ} \mathrm{min}^{-1}$ prescan Calculated speeds for the slow scan (based on the net intensity gathered in the prescan) ranged from 7 to $02^{\circ} \mathrm{mm}^{-1}$ Other diffractometer parameters and the method of estimation of standard deviations have been previously described [19] As a check on the stability of the instrument and crystal, three reflections were measured after every 30 reflections, no sigmificant vanation was noted

One independent octant of data was measured out to $2 \theta=52^{\circ}$, a slow scan was performed on a total of 648 unique reflections Since these data were scanned at a speed which would yield a net count of 4000 , the calculated standard deviations were all very nearly equal. No reflection was subjected to a slow scan unless a net count of 15 was obtamed in the prescan Based on these considerations, the cata set of 648 reflections (used in the subsequent structure determination and iefinement) was considered observed, and consisted in the main of those for

TABLE 1
CRYSTAL DATA

```
Nol formula (C55%5)2Ti(CO)
vol wt 23411
Linear abs coefi \mu 7 82 cm-1
Calc density 1 4 [ g cm
Max crystal dimensions 020 < 0 30 < 054. mm
Sozce Group orthorhombic Pnma
volecules/umit cell 4
Cell constants c a=7837(9) b=11475(8) c=12 232(8)A
Cell volume 11000 {3
```

[^0]which $I>3 \sigma(I)$. The intensities were corrected for Lorentz and polarization effects, but not for absorption ($\mu=782 \mathrm{~cm}^{-1}$), since the estımated minmum and maximum transmission factors are 0.75 and 084 , respectively.

The function $w\left(\left|F_{o}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ was mmimized [20] No corrections were made for extinction. Neutral atom scattering factors were taken from the compilations of Cromer and Waber [21] for $\mathrm{T}_{1}, \mathrm{O}$, and C , those for H were from "International Tables for X-ray Crystallography" [22] The scattering by Ti was corrected for the real and imaginary components of anomalous dispersion using Cromer's table [23].

Structure solution and refinement

The existence of four molecules per unit cell in the space group Pnma demanded that the molecule reside on either a mirror plane or a center of inversion' chemical intuition clearly ruled out the latter possibility Interpretation of a Patterson map gave the position of the titanium atom, and a subsequent difference Founer afforded the coordinates of the remaining non-hydrogen atoms. Least-squares refinement with isotopic temperature factors yielded $R_{1}=\Sigma\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right) / \Sigma\left|F_{\mathrm{o}}\right|=015$ Conversion to anisotropic thermal parameters and further refinement gave $R_{1}=0090$ The placement of the six sym-metry-independent hydrogen atoms in calculated positions, and more cycles of least-squares refinement led to final values of $1 R_{1}=0086$ and $R_{2}=\left[\Sigma w\left(\left|F_{0}\right|-\right.\right.$ $\left.\left.\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma\left|F_{\mathrm{o}}\right|^{2}\right]^{1 / 2}=0.082$ The weighting scheme was based on unit weights, and unobserved reflections were not included The largest parameter shifts in the final cycle of refinement were less than 001 of their estimated standard deviation The estimated standard deviation of an observation of unit weight was 060 . The final values of the positional and thermal parameteis are given in Table 2 ${ }^{-}$

Discussion

The molecular structure and atom numbering scheme of dicarbonyldicyclopentadienyltitanium(II) is given as Fig 1, while the important bond distances and angles are listed in Table 3. The molecule, which resides on a crystallographic mirror plane that passes through the cyclopentadienyl gioups, possesses almost exact $C_{2 v}$ point symmetry

There are two features of the structure of primary importance the metal-carbonyl and the metal-cyclopentadienyl interactions In order to interpret the $\mathrm{T}_{1}-\mathrm{C}$ (carbonyl) bond length of $2030(11) \AA$, it is illustrative to draw a comparison across the first transition series However, difficulties arise immediately because there are hundreds of structures of carbonyl compounds from which to choose For our purposes it would be best to have bond distance data for compounds which are closely related to $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}(\mathrm{CO})_{2}$ Since structural

[^1]TABLI 2

Atom	$\overline{2 / a}$	v / b	z/4	β_{11}	$\\|_{22}$	β_{73}	β_{12}	β_{13}	β_{23}
T1	(3 3118(s)	02500	$00048(2)$	$00113(3)$	$00062(2)$	$00050(1)$	00000	$00002(2)$	00000
\bigcirc	$01757(14)$	$00585(7)$	01691 (7)	$00586(33)$	00092 (8)	$00151(8)$	$\longrightarrow 0069(14)$	$00132(15)$	00026 (7)
C(1)	$00712(21)$	02600	-00741(16)	$00131(31)$	00251 (33)	$00128(18)$	00000	-00038(20)	00000
C(2)	$01669(17)$	$01484(11)$	-0 1153(12)	$00227(26)$	0,0137(14)	$00170(15)$	-0,0069(19)	-00006(19)	$00021(13)$
C(3)	$02853(18)$	0,1807(10)	-0 1711(10)	$00363(35)$	$00131(13)$	$00098(10)$	-00010(17)	-00068(15)	-00017(0)
C(4)	$0.6584(25)$	02500	$01381(13)$	00345 (50)	00151 (20)	$00091(15)$	00000	-00102(22)	00000
C(6)	0) $6929(16)$	$01407(10)$	$00707(10)$	$00236(25)$	$00091(10)$	$00121(11)$	$00005(14)$	-00074(14)	$0001419)$
C(6)	0 6198(12)	01885 (9)	$-00349(10)$	$00134(21)$	$00108(11)$	$00138(12)$	$00018(11)$	-00010(11)	-00020(9)
C(7)	0 2358(15)	01272 (0)	$01028(9)$	$00278(20)$	$00067(9)$	$00106(10)$	$-00006(13)$	$00018(13)$	0,0003(8)
H(1)	-0)035	0250	-0 $02.3{ }^{6}$						
H(2)	0123	0063	-0101						
H(9)	0374	0177	-0214						
H(4)	0526	0260	0219						
H(5)	0575	0065	0096						
H(6)	0643	01.36	-0 103						

[^2]

Fig 1 Structure of dicarbonyldicyclopentadienylitanium(II) with the atoms displayed as their 50\% probability ellipsoids for thermal motion
data on such analogues do not in general exist, Table 4 contans a reasonable alternative. for each metal an average of several metal-carbon(carbonyl) bond lengths taken from recent crystal structure determinations is listed. In this manner the trend in bond lengths is clearly shown The metal-carbon separathons agree well with those predicted from metallic radin data [24] with only a slight bond length increase noted in the early transition metal complexes This means that the dearth of d-electrons in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}(\mathrm{CO})_{2}$ does not cause a marked elongation of the $\mathrm{T}_{1}-\mathrm{C}$ (carbonyl) bond over that which would be suggested by metallic radn considerations

TABLE 3
INTERATOMIC DISTANCES (A) AND ANGLES (${ }^{\circ}$) FOR $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}(\mathrm{CO})_{2}$

Tr-C(1)	$2328(16)$	T1-C(4)	$2356(16)$
T.-C(2)	$2368(12)$	T 1 -C(5)	$2354(11)$
$\mathrm{T},-\mathrm{C}(3)$	$2336(11)$	T3-C(6)	$2340(10)$
T1-C(7)	$2030(11)$		
T1-Cent1 ${ }^{\text {a }}$	2032	T1-Cent2	2018
C(1)-C(2)	144 (2)	C(4)-C(5)	$143(1)$
C(2)-C(3)	$132(2)$	$C(5)-C(6)$	$139(1)$
$c(3)-c(3) b$	$138(2)$	C(6)-C(6)	$141(1)$
C(7)-0	1 15(1)		
C(7)-Tr-Cenz1	1041	C(7)-Tı-Cent2	1054
$C(7)-T 1-C(7)$	$879(6)$	Cent1-T2-Cent2	1386
$\mathrm{T}-\mathrm{C}(7)-\mathrm{O}$	179 4(9)		
C(2)-C(1)-C(2)	108(1)	$C(5)-C(4)-C(5)$	107(1)
C(1)-C(2)-C(3)	105(1)	$C(4)-C(5)-C(6)$,	108(1)
C(2)-C(3)-C(3)	111(1)	C(4)-C(6)-C(6)'	109(1)

[^3]TABLE 4
SUMMARY OF METAL-CARBOV(CARBONYL) BOND LENGTHS ACROSS THE FIRST TRANSITION METAL SERIES

Metal (v)	$\mathrm{M}_{\text {(5) }} \mathrm{C}^{(\text {carbony })}{ }^{a}$	$\mathrm{R}^{\text {b }}$	$\Delta(\mathrm{Tl}-\mathrm{M})$		Compound	Ref
			$\mathrm{M}-\mathrm{C}$	R		
Ti	203	147			$\left(n^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}_{1}(\mathrm{CO})_{2}$	Thus work
V	193	134	010	013	$\left[\left\{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right\}_{2} \mathrm{~N}\right]\left[\mathrm{V}(\mathrm{CO})_{6}\right]$	45
Cr	186	128	017	019	$\left(\eta^{5}-\mathrm{C}_{13} \mathrm{H}_{9}\right) \mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{NO})$	46
In	180	127	023	020	$(\mathrm{CO})_{3} \mathrm{MnB}_{9} \mathrm{H}_{12}$ THF	47
Fe	177	126	026	021	$\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}\left(\mathrm{SO}_{2}\right)$	48
Co	176	125	027	022	$\mathrm{Co}_{3}(\mathrm{CO})_{7} \mathrm{As}_{2} \mathrm{~F}_{4} \mathrm{C}_{10} \mathrm{H}_{15}$	49
Vi	180	124	023	023	$\mathrm{N}_{12}\left[\left(\mathrm{CF}_{3}\right)_{2} \mathrm{PSP}\left(\mathrm{CF}_{3}\right)_{2}(\mathrm{CO})_{3}\right.$	50
Cu	176	128	027	019	$\left[\mathrm{HB}\left(\mathrm{C}_{3} \mathrm{~V}_{2} \mathrm{H}_{3}\right)_{3}\right] \mathrm{Cu}(\mathrm{CO})$	51

${ }^{a}$ The $M-C$ distance 15 the average from several recent determinations and the coripound given is an example of one which possesses the average distance ${ }^{b}$ Ref 24

The nature of the interaction of the cyclopentadienyl group with early transition metal atoms has recently been extensively investigated. The original model for the bonding in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ML}_{2}$ complexes was supphed by Ballhausen and Dahl [25] m 1961 An alternative explanation was given by Alcock [26] in 1967, and features of beth were incorporated in the modification proposed by Green, Green and Prout [27] in 1972 Important experimental substantiation came in the form of a large body of structural data [28] It was seen that the impoitant parameter was the $\mathrm{L}-\mathrm{M}-\mathrm{L}$ bond angle metals with d^{2} electronic configu rations were found to exhibit values from $76 \rightarrow 82^{\circ}$, whereas d^{1} gave $85 \rightarrow 88^{\circ}$, and $d^{\circ}, 9 \div \rightarrow 97^{\circ}$ Lauher and Hofimann [29] have subsequently reported calculated values for the $\mathrm{L}-\mathrm{M}-\mathrm{L}$ angles of $\sim 85^{\circ}$ for d^{1}, and 110° for d^{0}

The data given in Table 5 show additional vanables supenmposed on this general trend. Thus, the d^{0} complexes exhibit angles manly in the range $86 \rightarrow$ 95°, and the d^{1} moleties, from $76 \rightarrow 82^{\circ}$ However, the diversity of ligand systems employed causes noteworthy discrepancies The metallocychc ring systems with Lirst row elements, exemplified by $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}_{1}$ (bipy) [30], [$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}_{1}$ $\mathrm{DNIL}]_{2}\left[\mathrm{Zn}_{2} \mathrm{Cl}_{6}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{6}[31],\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Tl}_{1}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$ [32], and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}_{1} \mathrm{C}_{8} \mathrm{H}_{4}-$ $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}[33]$, show a narrow range of $\mathrm{L}-\mathrm{T}-\mathrm{L}$ angles $\left(76.1 \rightarrow 80.3^{\circ}\right.$) due to the constraints of the heteroatom rings

In assessing the meaning of the $\mathrm{L}-\mathrm{T}_{1}-\mathrm{L}$ bond angle, another important consideration is the $\mathrm{T}_{1}-\mathrm{L}$ bond length For $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiCl}_{2}$ [34], the $\mathrm{T}_{1}-\mathrm{Cl}$ distance is $2364(2) \hat{\AA}$, while in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}(\mathrm{CO})_{2}$, the $\mathrm{T}_{1}-\mathrm{C}$ separation is $2030(11) \AA$ This causes a comparatively greater steric interaction between carbonyl carbon atoms, and may be the orıgin of the large $C-T 1-C$ bond angle, $879(6)^{\circ}$.

The one parameter which seems to be relatively unaffected by the choice of the L group is the distance of the titanum atom to the center of the cyclopentadienyl ring For d^{0} the average of the eight determinations [32-39] given in Tajle 5 is $2068(8) \AA$, while for d^{1} the average of the eight values [31,40$44]$ is $2.045(11) \mathrm{A}$. Because of crystallographic problems there is a large uncertainty assocrated with the $211 \AA$ distance histed for $\left(\eta_{1}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}$ (bipy) [30]. The most accurate value for the d^{2} case is that given for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}(\mathrm{CO})_{2}$,

TABLE 5
COMPARISON OF STRUCTURAL PROPERTIES OF COMPOUNDS OF THE GENERAL FORMULA $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiL}_{2}$

Compound	Electronir configuration of titanium	$\begin{aligned} & \mathrm{L}-\mathrm{T}_{1}-\mathrm{L} \\ & \text { Angle }\left({ }^{\circ}\right) \end{aligned}$	Distance of Tifrom cyclopentadiensl ring centroid (A)	Ref
$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}(\mathrm{CO})_{2}$	d^{2}	87 9(6)	2025	This wo
	d^{2}	761 (4)	211	30
$\left(n^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}_{1}\left[\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{2}\right]$	d^{1}		2030	40
$\left(7^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}_{1}\left(\mathrm{BH}_{4}\right)$	d^{1}		203	
$\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}_{1} \mathrm{DME}\right]_{2}\left[\mathrm{Zn}_{2} \mathrm{Cl}_{6}\right] \mathrm{C}_{6} \mathrm{H}_{6}{ }^{\text {b }}$	d^{1}	76 6(2)	204	31
$\left[\left(7^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TrCl}_{2} \mathrm{ZnCl}_{2} \quad 2 \mathrm{C}_{6} \mathrm{H}_{6}\right.$	d^{1}	$8209(6)$	204	31
$\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}_{1} \mathrm{Cl}_{2}\right]_{2}$	d^{1}	$7842(7)$	205	43
$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}_{2}\left(\eta^{2}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$	d^{1}		205	41
$\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} \mathrm{Tr}_{3} \mathrm{Cl}_{3}\right.$	d^{1}	79 26(6)	206	43
$\left[\left(n^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiCl}_{2} \mathrm{MnCl}_{2}-2 \mathrm{THF}{ }^{\mathrm{C}}\right.$	d^{1}	$8131(6)$	206	44
$\left(7^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TrC}_{8} \mathrm{H}_{4}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}{ }^{\text {d }}$	$a^{\text {o }}$	$783(4)$	2049	33
$\left(7^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}\left(\mathrm{NCO}_{2}\right.$	d^{0}	947 (2)	2056	35
$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TlCl}_{2}$	d^{0}	$9453(6)$	2059	34
$\left(\mathrm{CH}_{2}\right)_{3}\left(n^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Tr}_{1} \mathrm{Cl}_{2}$	d^{0}	$9369(5)$	2061	36
$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiS}_{5}$	d^{0}	946	2064	37
$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TrC}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$	$d^{\text {O }}$	$803(2)$	2065	32
$\left(n^{5}-\mathrm{C}_{5} \mathrm{HH}_{5}\right)_{2} \mathrm{~T}_{1}(\mathrm{Cl}) \mathrm{OCCO}_{3}(\mathrm{CO})_{9}$	d^{0}	920	207	38
$\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Tl}^{(} \eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$	d^{0}	863	2078	39

${ }^{\boldsymbol{a}}$ Here and elsewhere in the manuscript bipy is used as an abbreviation for the bipyndyl hgand ${ }^{b}$ DME is dimethoxyethane ${ }^{c}$ THF is tetrahydrofuran ${ }^{d} \mathrm{~T}_{1} \mathrm{C}_{8}$ is the titanaindene group

Fig. 2 Stereoscopic view of the unit cell paclong for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}_{1}(\mathrm{CO})_{2}$
$2.025 \AA$. Although there is a rather large spread in the values given in Table 5 , the clifferences among the averages are undoubtedly real because of the large number of determinations involved Thus, with the addition of d electrons there is a clecrease in the Tr -ring center distance (or a decrease in the $\mathrm{Ti}-\mathrm{C}\left(\eta^{5}\right)$ bond length). Therefore, it appears that the d electrons reside in an orbital which is at least slightly bonding with respect to the titanium-cyciopentadienyl interaction.

It is interesting to note that the cyclopentadienyl rings exist in an eclipsed configuration (Fig . 1) A consequence of this is the abnormally high centroid-Ti-centroid angle, 1386°. In molecules with the staggered arrangement, the value ranges from 130.97° in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~T}_{1} \mathrm{Cl}_{2}$ [34] up to $1348(3)^{\circ}$ in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2^{-}}$ $\mathrm{TiC}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$ [32]. An eclipsed configuration is also found in $\left(\mathrm{CH}_{2}\right)_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}-$ $\mathrm{T}_{1} \mathrm{Cl}_{2}$, but here apparently the constraint placed by the three-carbon atom bridge reduces the centroid- T_{1}-centroid angle to 132.64°

The carbonyl group bonds to the titanium atom in a strictly linear fashion* the $\mathrm{Tr}-\mathrm{C}-\mathrm{O}$ angle is $179.4(9)^{\circ}$ The $\mathrm{C}-\mathrm{O}$ bond length of $1 \mathrm{I}(1) \AA$ is well within accepted values for the ligand [45].

The unit cell packing, shown in Fig. 2. is typical of a molecular compound of this type

Acknowledgements

The authors are grateful to the National Science Foundation for a grant to MD R. in support of this research program, to the Research Grants Committee of the University of Alabama for a grant to $\bar{J} L$ A., and to the Deutsche Akademischer Austauschdienst, Bonn/Bad Godesberg, Germany, for a fellowship for H A.

References

[^4]least-squares refinement, by W R Busing K O Martin and H A Levy), ORFFE (distances and angles with esd's, by W R. Busing K O Martin and H.A Levy) ORTEP (thermal ellipsoid drawings by C k Johnson), FOURIER (D J Hodsson's version of Dellaca and Robinson's program) and BPL (leastsquares planes, by W E Hunter)
21 D T. Cromer and J T Waber, Acta Crystallogr 18 (1965) 104
22 "International Tables for X-ray Crystallography." Yol III, Kynoch Press, Birmingham England 1962 p 202
23 D T. Cromer and D Liberman, J Chem Phys 53 (1970) 1891
24 L Pauling The Nature of the Chemical Bond, Cornell Universits Press Ithaca N Y 1960 p 403
25 C Ballhausen and JP. Dah1 Acta Chem Scand 15 (1961) 1333
26 N W Alcock, J Chem Soc A, (1967) 2001
27 JC Green, ML H Green and C K Prout Chem Commun (1972) 421
28 K Prout $\mathbf{T} S$ Cameron R A Forder, S R Cntchley B Denton and G V Rees Acta Crastallogr B 30 (1974) 2290
29 JW Lauher and R Hoffmann, personal commincation
30 A M McPherson and G D Stucky, personal communication
31 D G Sekutowsik and G D Stucky personal communication
32 JL Atwood WE Hunter H Alt and MD Rausch J Amer Cher Soc 98 (1976) 2454
33 J L Atwood, M B Humphres and M D Rausch unpublished results
34 A Clearfield D K Warner C H Saldarnaga-Molina R Ropal and I Bernal Can J Chem 53 (1975) 1622
35 S J Anderson D S Brown and A H Norbury J Chem Soc Chem Commun (1974)996
36 BR Davis and I Bernal J Organometal Chem 30 (1971) 75 EF Epstein and I Bernal Inorg Chim Acta 7 (1973) 211
37 EF Epstem and I Bernal J Chem Soc Chem Commur (1970) 410
38 G Schmid V Batzel and B Stutte J Organometal Chem 113 (1976) 67
39 JL Calderon FA Cotton, B G DeBoer and J Takats J Amer Chem Soc 93 (1971) 3592
40 GJ Olthof and F van Bolhus J Organometal Chem 122 (1976) 47
41 CR Lucas, M Green R A Forder and K Prout J Chem Soc Chem Commun (1973) 97
42 X M Velmed, D Coucouvanis and S J Lippard, Inorg Chem, 12 (1973) 232
43 D G Sekutowski R Jungst J Dans and G D Stucky personal communication
44 D G Sekutouskz R Jungst and G D Stucks personal commumeation
45 R D Wilson and R Bau J Amer Chem Soc 96 (1974) 7601
46 J L Atw ood and M Herberhold unpublished results
47 J W Loth and D F Gaines Inorg Chem 13 (1974) 2261
48 M R Churchill B G DeBoer and K L Kalra Inorg Chem 12 (1973) 1646
49 F W B Einstein and R D G Jones Inorg Chem 11 (1972) 395
50 H Einspahr and J Donohue, Inorg Chem 13 (1974) 1839
51 IR Churchill BG DeBoer F J Rotella OM A Salah and MI Bruce Inorg Chem 14 (1975) 2051

[^0]: ${ }^{6}$ 3lo-K K_{α} radration $1=071069$ a Ambient temperature of $23=1^{\circ} \mathrm{C}$

[^1]: * The table of structure factors has been deposited as NAPS Document No 02976 (7 pages) Order from ASIS/NAPS c/o Microfiche Publications P O Box 3513, Grana Central Station New York NY 10017 A copy may be secured bv citing the document number, remiting $\mathbf{S} 5$ for photocopies or $\$ 3$ for microfiche Advance payment is required Make checks pavable to Microfiche Publications

[^2]: ${ }^{d}$ Anisotropic thermal parameters defined by exp $\left[-\left(\beta_{11} h^{2}+\beta_{22} h^{2}+\beta_{33} l^{2}+2 \beta_{12} h h+2 \beta_{13} h 1+2 \beta_{23} h\right)\right]{ }^{b}$ Hydrogen atoms placed in calculated positions (1.00 A from the bonded cabon atom) with $B=60 \AA^{2}$

[^3]: ${ }^{\alpha}$ Centl is the centroid of the cyclopentadienyl nng which contans $C(1) C(2)$ and $C(3) C e n t 2$ is that of $C(4) C(5)$ and $C(6)^{b}$ Primed atoms are related to those given in Table 2 by $\left(x \frac{1}{2}-y z\right)$

[^4]: 1 L O Brochwas and P C Cross, J Chem Pnys 3 (1935) 828
 2 RVG Ewens and II 'V Lister Trans Faradas Soc 35 (1939) 681
 3 A.W Hanson Acta Crystalogr 15 (1962) 930
 4 I Donohue anc A Caron Acra Crs stallogr 17 (1964) 663
 5 Mi Davis and H P Hanson, J Phys Chem, 69 (1965) 3405
 6 J Dononue and A Caron, J Phys Chem, 70 (1966) 603
 7 III Davis and H P Hanson, J Phys Chern, 71 (1967) 775
 8 J Dorohue and A Caron, J Phes Chem 71 (1967) 777
 9 B Beagley, DWJ Cruickshank P M Pinder A G Robiette and G M Sheldnck Acta Crystallogr B 25 (1969)737
 10 J G Viurrav J Amer Chem Soc 81 (1959) 752 83 (1961) 1287
 11 G Fachinetta and C Flonani J Chem Soc Chem Cormun. (1972) 654
 12 H. Alt and UD Rausch, J Amer Chem Soc 96 (1974) 5936
 13 P C Waues R S P Coutts and H Weigoid Organometallic Chemustry of Titanum, Zurconium and Hainuum Academic Press New York 1974 p 239 ff
 14 K Sonogashira and N Hagihara Bull Cherr. Soc Jap 39 (1966) 1178
 15 EO Fscher ard R Amtmann J Organometal Chem, 9 (1967) P15.
 16 C EOneni anc G Fachnetti J Chem. Soc Chem Commun. (1972) 750
 17 G Fachnetti and C Flonam J Chem Soc Chem Commur, (1974) 66
 18 JL Atwood $\mathrm{K} E$ Stone H.G Alt, D C Hmer and $1 \mathrm{D} D$ Rausch. J Organometal Chem 96 (1976) C4
 19 J L Atwood and K D Smith J Amer Chem Soc, 95 (1973) 1488
 20 Crvstallographic programs used on a UNIVAC 1110 incluce ORFLS (structure factor calculation and

